

Содержание

1.	Полный сброс устройства	. 3
2.	Описание DIP переключателей	. 3
3.	Режим индикации	. 3
4.	Режим программирования	. 4
5.	Программа конфигурации, мониторинга и отладки	. 5
6.	Командный интерфейс	. 6
7.	Команды	. 7
8.	Чертеж установки контура петли	10

Полный сброс устройства

Контроллер конфигурируется с помощью программы конфигурации по RS485 порту или с помощью DIP переключателей.

Полный сброс устройства: если при включении держать нажатой кнопку (или закоротить контакты 1 и 6 на разъеме возле процессора) от 5 до 10 секунд, - загорится светодиод и если отпустить кнопку - то в EEPROM запишется конфигурация по умолчанию.

Если держать дольше чем 10 секунд, то сброса не произойдет.

Описание DIP переключателей:

DIP переключатели – положение (**1=on 0=off**)

DIP1 - 8 переключателей

- **1 2** переключатели: изменение частоты генератора (для тонкой подстройки сложных, много-петельных датчиков)
- 0 0 максимальная частота
- **0 1** уменьшить частоту на 25%
- **1 0** уменьшить частоту на 25%
- **1 1** уменьшить частоту на 50%
- 3 переключатель:
 - **on** программирование
 - off режим индикации

DIP2 - 2 переключателя

- **DIP2** изменение напряжения на генераторе (для тонкой подстройки сложных, много-петельных датчиков) (находится внутри корпуса.)
- 1 2 переключатели частоты петли (увеличение чувствительности)
- **0 0** «стандартный режим» (по умолчанию).
- 1 0 «+40%»
- **0 1** «+60%»
- **1 1** «максимум».

Режим индикации.

DIP1 «3» – переключатель - **off**

4567 - переключатели: выбор режима индикации

- **0 0 0 0 с**ветит светодиодом, когда сработала петля «есть машина» и не светит когда «нету машины» **обычный режим индикации**
- **1 1 0 0** нажать кнопку = промигать текущую разницу частот между опорной (калибровочной) и текущей (Гц)

4567 - переключатели: выбор режима индикации

- 0 0 1 0 нажать кнопку = промигать текущую частоту петли (Гц)
- 1000 нажать кнопку = промигать уровень1 "срабатывание" (основной уровень) (Гц)
- 0 1 0 0 нажать кнопку = промигать уровень2 "отпускание" (должен быть немного меньше чем

КОНТРОЛЛЕР ИНДУКЦИОННОЙ ПЕТЛИ AUDT485

уровень1) (Гц)

- **1 0 1 0** нажать кнопку = промигать задержку срабатывания состояния "есть-машина" ("E1") (1=0.01сек, 100=1сек, ...)
- **0 1 1 0** нажать кнопку = промигать задержку срабатывания состояния "нет-машины" ("H1") (1=0.01сек, 100=1сек, ...)
- 1 1 1 0 нажать кнопку = промигать уровень автоматической подстройки опорной частоты (Гц)
- 0 0 0 1 нажать кнопку = промигать количество проехавших машин с момента включения или сброса
- **0 0 1 1** нажать кнопку = промигать период записи "опорной" частоты в EEPROM в минутах
- **0 1 0 1** нажать кнопку = промигать разрешенную скорость корректировки опорной частоты в гц за 1 час
- **1001** нажать кнопку = промигать сколько раз в секунду идет замер частоты (1-100) (1=самый чувствительный, точность +-1Гц; 100=самый быстрый, точность +-100Гц) Допустимые значения (100/1,2,3,...): 100, 50, 33, 25, 20, 16, 14, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
- **1111** нажать кнопку = промигать температуру с термистора (не в градусах, смотри ниже формулу пересчета в градусы цельсия)

Режим программирования

DIP1 «3» – переключатель - on

4 5 6 7 - переключатели: выбор режима программирования

0 0 0 0 нажать кнопку = сброс в ноль "калибровка" опорной частоты на пустой петле - запоминает текущую частоту на петле как опорную

(также можно делать калибровку замыканием разъема внешней кнопки калибровки и не зависимо от состояния DIP)

- **1000** нажимаем кнопкой нужное кол-во раз = установка уровня1 "срабатывание" (минимальное значение=1) (Гц)
- **0 1 0 0** нажимаем кнопкой нужное кол-во раз = установка уровня2 "отпускание" (минимальное значение=1) (Гц)
- **1010** нажимаем кнопкой нужное кол-во раз = установка задержки срабатывания состояния "есть-машина" ("E1") (1=0.01сек, 100=1сек, ...)
- **0 1 1 0** нажимаем кнопкой нужное кол-во раз = установка задержки срабатывания состояния "нет-машины" ("H1") (1=0.01сек, 100=1сек, ...)
- **1100** нажимаем кнопкой нужное кол-во раз = установка длительности импульса реле К2 (1 нажатие = 0.1 сек)
- **1110** нажимаем кнопкой нужное кол-во раз = установка уровня автоматической подстройки опорной частоты (Гц).
- **0 0 1 1** нажимаем кнопкой нужное кол-во раз = установка периода записи опорной частоты в EEPROM в минутах (по умолчанию 180 = 3 часа).
- **0 1 0 1** нажимаем кнопкой нужное кол-во раз = установка разрешенной скорости корректировки опорной частоты в гц за 1 час (по умолчанию 500).
- **1001** нажимаем кнопкой нужное кол-во раз = установка частоты замера частоты на петле (1-100) (1=самый чувствительный, точность +-1Гц; 100=самый быстрый, точность +-100Гц) Допустимые значения (100/1,2,3,...): 100, 50, 33, 25, 20, 16, 14, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

!!! Чтобы сохранить запрограммированные с помощью кнопки значения в EEPROM необходимо переключить DIP3 в положение «off» и если все в порядке, то светодиод мигнет длительным импульсом.

Можно переключить 4 или 5 или 6 или 7 переключатели в другое положение, чтобы не сохранять.

Если держать кнопку нажатой около 1 секунды, то введенное значение умножится на 10 и светодиод мигнет длительным импульсом.

DIP1 «8» - переключатель

on - даем импульс на реле - **K2** когда машина заехала на петлю. ("BOX" – версии)

off - даем импульс на реле - **K2** когда машина съехала с петли. ("BOX" – версии)

В режиме индикации индикатор промигивает значения в таком порядке:

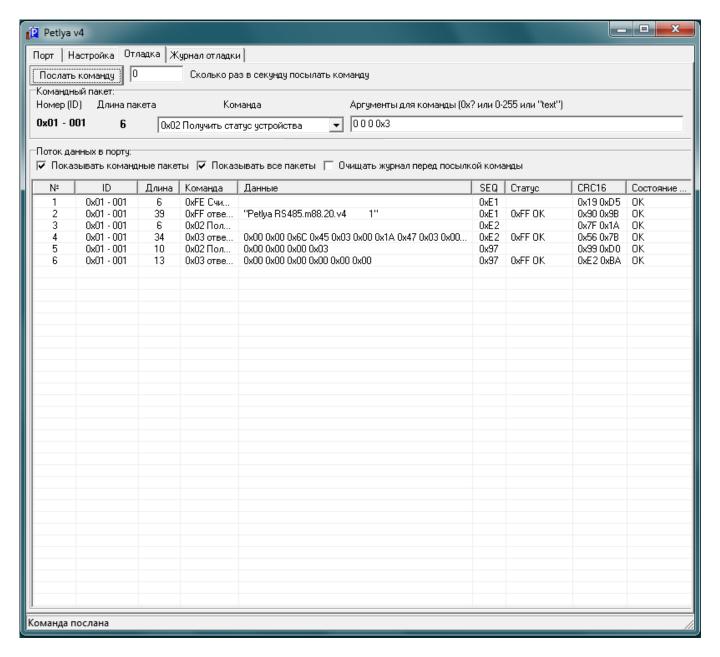
Например:

число «0» = 1 длинный

число «1230» = 1 короткий, пауза, 2 коротких, пауза, 3 коротких, пауза, 1 длинный

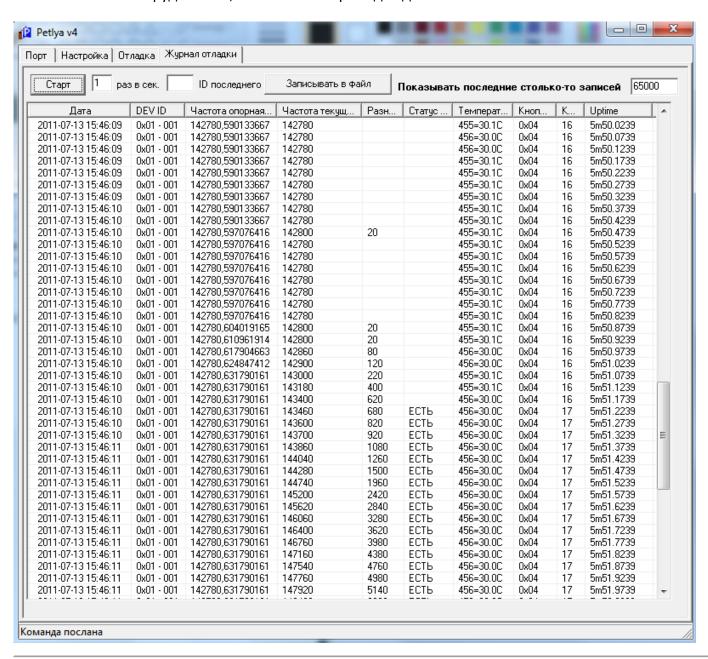
длительность короткого мигания = 0.3 сек светит, 0.3 сек короткая пауза длительность длинного мигания = 1.2 сек светит длительность паузы = 1.2 сек не светит

если не успели сосчитать - нажмите кнопку повторно.


Реле К1 срабатывает когда есть машина на петле и выключается когда нет. Реле К2 подает импульс указанной длительности при наезде на петлю или съезде с нее (смотри DIP1.8).

Программа конфигурации, мониторинга и отладки:

Petlya v4			
Порт Настройка Отладка Журнал отладки			
Считать конфигурацию с устройства Сохранить конфигурацию в устройство	Перегрузить устройство		
Считать конфигурацию с файла Сохранить конфигурацию в файл			
Номер устройства (ID) 0x01 · 001 Скорость на порту	115200 ▼ □ x2 □ "антишум" Г fastBC		
Общий ID (броадкаст) ОхFE - 254 (все кроме N 🔻	9* 0.0002 рекомендуется >= 0.0002		
Сколько раз в секунду делаем замер частоты (1-100)			
Уровень1 (чувствительность, уровень срабатывания) гц Задержка срабатывания состояния "есть-машина"*			
Уровень2 (чувствительность, уровень "отпускания") гц Задержка срабатывания состояния "нет-машины"*			
Длительность импульса для импульсного реле*			
Длительность "залипания" кнопок и переключателей*	0.1000		
Длительность ввода x10° (ввод больших чисел с кнопки)	1		
Опорная "калибровочная" частота гц	0		
Макс. разница частоты для автомат. калибровки опорной частоты гц	300		
Период записи опорной частоты в EEPROM*	3h 34.2 лет гарантирована работа EEPROM		
Скорость подстройки опорной частоты в гц за 1 час	500		
Параметры для подстройки опорной частоты когда есть машина:			
Период стабильности частоты после которого происходит подстройка*	10m		
Уровень стабильности в г ц	300		
Настройки задержки для ответа на броадкастовые			
Добавочное время на исполнение команды [*]	0		
длительность таинслота	0.0050 рекомендуется >= 0.0036		
Полная задержка = добавочное время + (ID устройства - 1) * для			
*Таймауты и длительности задаются в формате ?[DdДд]?[HhЧч]?(mm]?(sc].???? Например 2 дня 5 часов 12 минут 7 секунд и 9999 десяти тысячных секунд это 2D5H12m7.9999 Максимальное значение 4D23h18m			
онфигурация с устройства считана			



Командный интерфейс:

Мониторинг и анализ, позволяет мониторить одновременно множество датчиков "слушая" RS485 не мешая оборудованию, и писать все в файл для дальнейшего анализа.

Команды:

Получить название устройства, тип, версию и серийный номер

CMD=0xFE

ответ например:

RET DATA="Petlya RS485.m88.20.v4 1"

_ ,

Сброс устройства (перезагрузка, на опорную частоту не влияет)

CMD=0x28

Опрос состояния

CMD=0x02 DATA=

ответ

RET DATA=

- 1 байт 0=нет машины, 1=есть машина
- 1 байт состояние кнопки, внешней кнопки и DIP1 переключателей 3-8
- 4 байта текущая частота в гц
- 4 байта опорная частота в гц
- 2 байта дробная часть опорной частоты в гц/0х10000
- 4 байта количество срабатываний датчика с момента загрузки
- 2 байта температура с термистора
- 4 байта внутренний таймер 0.1мс
- 1 байт 1=частота стабильна
- 4 байта эталонная разница частоты от авто на начало стабильного периода (действителен только когда есть авто)

Выборочный опрос сотояния

CMD=0x02

DATA=

- 2 байта резерв (битовое поле для массового опроса состояния устройств реле и датчики)
- 2 байта битовое поле что хотим получить в ответ (состояние датчика, первый байт, шлется всегда):
- 0х0001 ответ слать не сразу а как только будет получена частота, служит для синхронного опроса,

нужен для отладки

- 0х0002 состояние кнопок и DIPов
- 0х0004 текущая частота
- 0х0008 опорная частота
- 0х0010 дробная часть опорной частоты
- 0х0020 количество срабатываний
- 0х0040 температура с термистора
- 0х0080 таймер
- 0х0100 стабильность частоты
- 0х0200 эталонная разница

ответ

RET DATA=

1 байт - 0=нет машины, 1=есть машина (всегда шлется)

дальше все в зависимости от битового поля

Чтение EEPROM

CMD=0x36 DATA=2 байта смещение, 1 байт длина (макс 32)

RET_DATA=считанные данные

Запись EEPROM

CMD=0x34 DATA=2 байта смещение, 1-32 байта данные для записи

Временно сменить свой ID на случайный (1-253)

// таймаут ввода х10 с кнопки

(до сброса или выключения, в EEPROM память не сохраняется). Применяется когда на одном порте есть несколько устройств с одинаковым ID, чтобы их временно разнести. Потом проводится поиск устройств и прописывается им другие ID. Потом сброс или выключение, и устройства будут иметь ID прописанный в EEPROM.

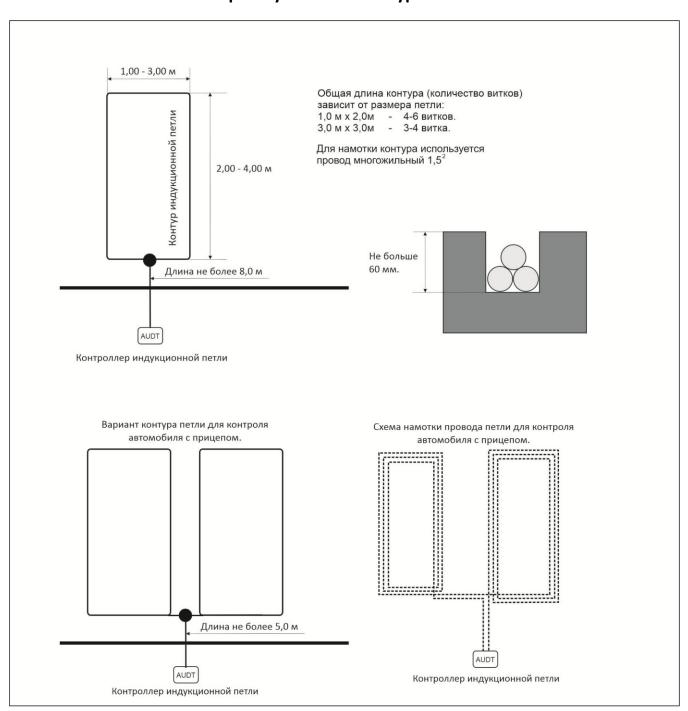
CMD=0xFC опционально DATA=1 байт маска (randomID & маска)

```
Карта EEPROM (@ смещение, внутренний таймер = 0.1мс = 10000 раз в сек, при изменении некоторых параметров
необходима перегрузка):
// DEVID платы
uchar EE DEVID @ 0
// броадкастовый адрес для плат (0xFF y Netronix)
uchar EE_DEVID_BROADCAST @ 1
// x2
// алгоритм приема "чужих" пакетов
#define RS_RX_ALGO2 0x40000000
// fast broadcast - алгоритм работает только вместе с RS_RX_ALGO2 означает что если мы в ожидании своего таймслота
// и получили пакет от предыдущего устройства - то можно сразу отвечать, не ждать дальше
#define RS RX FASTBC 0x20000000
#define RS BAUD MASK 0x1fffffff
#define DEF_BAUD (RS_RX_ALGO2 | RS_RX_FASTBC | 115200)
// скорость на порту
uint32 EE BAUD @ 2 = DEF BAUD
// таймаут чтения с rs485
uint32 EE_USART_read_timeout @ 6
// период замера частоты (в 10ms)
// 1-100 (1=100 раз в сек, 100=1 раз в сек)
uchar EE_T1_PERIOD @ 10
// опорная частота
uint32 EE_FREQ0 @ 11
// уровень срабатывания (чувствительность)
uint32 EE_LEVEL1 @ 15
// уровень "отпускания" (чувствительность)
uint32 EE_LEVEL2 @ 19
// длительность импульсов на реле 1 сек
uint32 EE RELAYS IMPULSE @ 23
// таймаут на залипание кнопок и дипов
uint32 EE_KEYS_timeout @ 27
// таймаут для перехода в 0
uint32 EE LT0@31
// таймаут для перехода в 1
uint32 EE_LT1 @ 35
// уровень автокоррекции опорной частоты ("авто-калибровка")
uint32 EE AUTO LEVEL @ 39
// частота записи FREQ0 в EEPROM
uint32 EE_FREQ0_SAVE_timeout @ 43
// уровень разрешенной корректировки опорной частоты в гц в час
uint16 EE FREQO DRIFT HZ1HOUR @ 47
```


uint32 EE X10 timeout @ 49

// таймаут на таймслот на ответ при броадкасте

uint32 EE_BROADCAST_timeslot @ 53


// добавочное время для броадкаста

uint16 EE_BROADCAST_ADD_timeslot @ 55

// период "стабильности" через какой начинаем подстройку опорной частоты когда машина столько стоит на петле uint32 EE_MIN_MAX_STAB_PERIOD @ 57

// уровень при колебании текущей частоты не больше чем на это значение мы считаем что частота стабильна uint32 $EE_FREQ_STAB @ 61$

Чертеж установки контура петли:

